Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.010
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405166, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600042

RESUMO

Self-charging power systems are considered as promising alternatives for off-grid energy devices to provide sustained electricity supply. However, the conventional self-charging systems are severely restricted by the energy availability and time-consuming charging process as well as insufficient capacity. Herein, we developed an ultrafast H2O2 self-charging aqueous Zn/NaFeFe(CN)6 battery, which simultaneously integrates the H2O2 power generation and energy storage into a battery configuration. In such battery, the chemical energy conversion of H2O2 can generate electrical energy to self-charge the battery to 1.7 V through the redox reaction between H2O2 and NaFeFe(CN)6 cathode. The thermodynamically and kinetically favorable redox reaction contributes to the ultrafast H2O2 self-charging rate and the extremely short self-charging time within 60 seconds. Moreover, the rapid H2O2 power generation can promptly compensate the energy consumption of battery to provide continuous electricity supply. Impressively, this self-charging battery shows excellent scalability of device architecture and can be designed to a H2O2 single-flow battery of 7.06 Ah to extend the long-term energy supply. This work not only provides a route to design self-charging batteries with fast charging rate and high capacity, but also pushes forward the development of self-charging power systems for advanced large-scale energy storage applications.

2.
Pest Manag Sci ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629874

RESUMO

BACKGROUND: The pea leafminer, Liriomyza huidobrensis, is one of the most important insect pests on vegetables and ornamentals. The survival and egg-laying behavior of leafminers are markedly affected by the environment temperature. However, the mechanisms underlying of the relationship between egg-laying and temperature are still largely unknown. RESULTS: Here, we find that leafminers have evolved an adaptive strategy to overcome the stress from high or low temperature by regulating oviposition-punching plasticity. We further show that this oviposition-punching plasticity is mediated by the expression of pyx in the ovipositor when subjected to disadvantageous temperature. Specifically, downregulation of pyx expression in leafminers under low temperature stress led to a significant decrease in the swing numbers of ovipositor and puncture area of the egg spot, and consequently the lower amount of egg-laying compared to leafminers at ambient temperature. Conversely, activation of pyx expression under high temperature stress increased the swing numbers and puncture area, still resulting in a reduction of egg-laying amount. CONCLUSION: Thereby, leafminers is able to coordinate pyx channel expression level and accordingly depress the oviposition. Our study uncovers a molecular mechanism underlying the adaptive strategy in insects that can avoid disadvantageous temperature for reproducing offspring. This article is protected by copyright. All rights reserved.

3.
J Glob Health ; 14: 04066, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574355

RESUMO

Background: Neck pain has become very common in China and has greatly affected individuals, families, and society in general. In this study, we aimed to report on the rates and trends of the prevalence, incidence, and years lived with disability (YLDs) caused by neck pain in the general population of China from 1990 to 2019. Methods: We used data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) study to estimate the number and age standardised rates per 100 000 population of neck pain point prevalence, annual incidence, and YLDs in 33 provinces/municipalities/autonomous regions of China, stratified by age, sex, and sociodemographic index (SDI) from 1990 to 2019. We then compared these estimates with other G20 countries. Results: There were 6.80 × 107 patients with neck pain in 2019, presenting an increase from 3.79 × 107 in 1990. Likewise, the national age-standardised point prevalence increased slightly from 3.53% in 1990 to 3.57% in 2019. The YLDs increased by 78.08%, from 3814 × 103 in 1990 to 6792 × 103 in 2019. The age-standardised YLDs rate increased 1.50% from 352.84 in 1990 to 358.10 in 2019. The point prevalence of neck pain in 2019 was higher in females compared with males. These estimates were all above the global average level and increased more rapidly among G20 countries from 1990 to 2019. We generally observed a positive association between age-standardised YLD rates for neck pain and SDI, suggesting the burden is higher at higher sociodemographic indices. Conclusions: Neck pain is a serious public health problem in the general population in China, especially in its central and western regions, with an overall increasing trend in the last three decades. This is possibly related to changes of people's lifestyles and work patterns due to improvements in societal well-being and technology. Raising awareness of risk factors for neck pain in the general population and establishing effective preventive and treatment strategies could help reduce the future burden of neck disorders.


Assuntos
Pessoas com Deficiência , Carga Global da Doença , Masculino , Feminino , Humanos , Cervicalgia/epidemiologia , Prevalência , Incidência , China/epidemiologia , Saúde Global
4.
Materials (Basel) ; 17(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612220

RESUMO

The disposal of electroplating sludge (ES) is a major challenge for the sustainable development of the electroplating industry. ESs have a significant environmental impact, occupying valuable land resources and incurring high treatment costs, which increases operational expenses for companies. Additionally, the high concentration of hazardous substances in ES poses a serious threat to both the environment and human health. Despite extensive scholarly research on the harmless treatment and resource utilization of ES, current technology and processes are still unable to fully harness its potential. This results in inefficient resource utilization and potential environmental hazards. This article analyzes the physicochemical properties of ES, discusses its ecological hazards, summarizes research progress in its treatment, and elaborates on methods such as solidification/stabilization, heat treatment, wet metallurgy, pyrometallurgy, biotechnology, and material utilization. It provides a comparative summary of different treatment processes while also discussing the challenges and future development directions for technologies aimed at effectively utilizing ES resources. The objective of this text is to provide useful information on how to address the issue of ES treatment and promote sustainable development in the electroplating industry.

5.
Biosens Bioelectron ; 257: 116295, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38653013

RESUMO

Hyperbolic metamaterial (HMM) biosensors based on metals have superior performance in comparison with conventional plasmonic biosensors in the detection of low concentrations of molecules. In this study, a nanorod HMM (NHMM) biosensor based on refractive index changes for carcinoembryonic antigen (CEA) detection is developed using secondary antibody modified gold nanoparticle (AuNP-Ab2) nanocomposites as signal amplification element for the first time. Numerical analysis based on finite element method is conducted to simulate the perturbation of the electric field of bulk plasmon polariton (BPP) supported by a NHMM in the presence of a AuNP. The simulation reveals an enhancement of the localized electric field, which arises from the resonant coupling of BPP to the localized surface plasmon resonance supported by AuNPs and is beneficial for the detection of changes of the refractive index. Furthermore, the AuNP-Ab2 nanocomposites-based NHMM (AuNP/Ab2-NHMM) biosensor enables CEA detection in the visible and near-infrared regions simultaneously. The highly sensitive detection of CEA with a wide linear range of 1-500 ng/mL is achieved in the near-infrared region. The detectable concentration of the AuNP/Ab2-NHMM biosensor has a 50-fold decrease in comparison with a NHMM biosensor. A low detection limit of 0.25 ng/mL (1.25 pM) is estimated when considering a noise level of 0.05 nm as the minimum detectable wavelength shift. The proposed method achieves high sensitivity and good reproducibility for CEA detection, which makes it a novel and viable approach for biomedical research and early clinical diagnostics.

6.
Food Res Int ; 184: 114254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609232

RESUMO

Polysaccharides have a significant impact on the physicochemical properties of starch, and the objective of this study was to examine the effect of incorporating soluble soybean polysaccharide (SSPS) on the gelatinization and retrogradation of corn starches (CS) with varying amylose content. In contrast to high-amylose corn starch (HACS), the degree of gelatinization of waxy corn starch (WCS) and normal corn starch (NCS) decreased with the addition of SSPS. The inclusion of SSPS resulted in reduced swelling power in all CS, and led to a decrease in gel hardness of the starches. The intermolecular forces between SSPS and CS were primarily hydrogen bonding, and a gel network structure was formed, thereby retarding the short-term and long-term retrogradation of CS. Scanning electron microscopy results revealed that the addition of SSPS in starches led to a loose network structure with larger poles and a reduced ordered structure after retrogradation, as observed from the cross-section of formed gels. These findings suggested that SSPS has great potential for applications in starchy foods, as it can effectively retard both gelatinization and retrogradation of starches.


Assuntos
Amilose , Soja , Zea mays , Amido , Polissacarídeos , Amilopectina
7.
Neuroscience ; 545: 59-68, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492795

RESUMO

This study investigated the potentials of hsa_circ_0018401 and miR-127-5p in traumatic brain injury (TBI) diagnosis, stratification and outcome prediction. A retrospective analysis of clinical data and blood samples of n = 109 TBI patients was performed. Expression levels of hsa_circ_0018401 and miR-127-5p were measured using Real-time PCR. The diagnostic values, as well as the values in TBI stratification, of hsa_circ_0018401 and miR-127-5p were assessed by receiver operating characteristic analyses. The prognostic impacts were investigated for one-year endpoint events using multivariable Cox regression analyses and receiver operating characteristic analysis. The target genes for miR-127-5p were predicted. An upregulation of hsa_circ_0018401 and a downregulation of miR-127-5p expression was detected in patients with TBI, and the highest or lowest levels were found in moderate/severe TBI. A negative correlation between miR-423-3p level and Dual luciferase reporter assay verified the binding relationship between hsa_circ_0018401 and miR-127-5p. Hsa_circ_0018401 and miR-127-5p, used alone or combinedly, showed clinical values for TBI diagnosis and stratification, as well as outcome prediction. The proteins for target genes covered TBI-related functions and pathways. Therefore, hsa_circ_0018401 and miR-127-5p could represent promising new biomarkers to identify TBI from healthy, moderate/severe TBI from mild TBI, as well as to predict the TBI outcome.

9.
Clin Oral Investig ; 28(3): 202, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453707

RESUMO

OBJECTIVES: To evaluate the effects of Nd:YAG laser irradiation on the microstructures of dentin surfaces and the long-term bond strength of dentin under simulated pulpal pressure. MATERIALS AND METHODS: Under simulated pulp pressure, 30 freshly extracted caries-free third molars were cut into 2-mm-thick dentin samples and then divided into five groups: the control and laser groups (93.3 J/cm2; 124.4 J/cm2; 155.5 J/cm2; 186.6 J/cm2). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Vickers hardness were used to analyze the surface morphology, composition, and mechanical properties of the dentin before and after laser irradiation. Another 80 caries-free third molars were removed and treated as described above, and the resin was bonded to the dentin surface with Single Bond Universal (SBU) adhesive in self-etch mode to make stick specimens. Microtensile bond strength (µTBS), confocal laser scanning microscopy (CLSM), and interfacial silver nanoleakage tests before and after 10,000 times thermocycling were then performed to analyze the bonding properties and interfacial durability of each group. RESULTS: SEM observations revealed that the surfaces of all laser group specimens were rough with open dentin tubules. Laser irradiation altered the surface composition of dentin while removing some collagen fibers but did not affect its surface hardness or crystallographic characteristics. Furthermore, laser irradiation with an energy density of 124.4 J/cm2 significantly promoted the immediate and aging bond strengths and reduced nanoleakage compared to those of the control group. CONCLUSIONS: Under simulated pulp pressure, Nd:YAG laser pretreatment altered the chemical composition of dentin and improved the immediate and long-term bond strength. CLINICAL RELEVANCE: This study investigated the optimal parameters for Nd:YAG laser pretreatment of dentin, which has potential as a clinical method to strengthen bonding.


Assuntos
Colagem Dentária , Cárie Dentária , Lasers de Estado Sólido , Humanos , Dentina/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Cimentos Dentários , Polpa Dentária , Microscopia Eletrônica de Varredura , Resistência à Tração , Adesivos Dentinários/química , Cimentos de Resina/química
10.
Plant Physiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536032

RESUMO

Carotenoids are major pigments contributing to fruit coloration. We previously reported that the apple (Malus domestica Borkh.) mutant fruits of 'Beni Shogun' and 'Yanfu 3' show a marked difference in fruit coloration. However, the regulatory mechanism underlying this phenomenon remains unclear. In this study, we determined that carotenoid is the main factor influencing fruit flesh color. We identified an R1-type MYB transcription factor, MdMYBS1, which was found to be highly associated with carotenoids and abscisic acid (ABA) contents of apple fruits. Overexpression of MdMYBS1 promoted, and silencing of MdMYBS1 repressed, ß-branch carotenoids synthesis and ABA accumulation. MdMYBS1 regulates carotenoid biosynthesis by directly activating the major carotenoid biosynthetic genes encoding phytoene synthase (MdPSY2-1) and lycopene ß-cyclase (MdLCYb). 9-cis-epoxycarotenoid dioxygenase 1 (MdNCED1) contributes to ABA biosynthesis, and MdMYBS1 enhances endogenous ABA accumulation by activating the MdNCED1 promoter. In addition, the basic leucine zipper domain transcription factor ABSCISIC ACID-INSENSITIVE5 (MdABI5) was identified as an upstream activator of MdMYBS1, which promotes carotenoid and ABA accumulation. Furthermore, ABA promotes carotenoid biosynthesis and enhances MdMYBS1 and MdABI5 promoter activities. Our findings demonstrate that the MdABI5-MdMYBS1 cascade activated by ABA regulates carotenoid-derived fruit coloration and ABA accumulation in apple, providing avenues in breeding and planting for improvement of fruit coloration and quality.

11.
J Prosthet Dent ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490934

RESUMO

Current methods for designing anterior guidance of anterior fixed prostheses are either complicated or lack accuracy. The article describes a fully digital workflow to design individualized anterior guidance of an implant-supported single crown by using a modified patient-specific motion technique. The technique aims to optimize the digital occlusal design workflow, thereby improving the occlusal fit and long-term stability of anterior fixed prostheses.

12.
Talanta ; 273: 125837, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479030

RESUMO

CRISPR/Cas9 is a natural immune system of archaea and bacteria, which has been widely used in gene editing. In order to better control and improve the accuracy and safety of the system, inhibitors for SpyCas9 as "switches" have been selected for several years. The available inhibitors currently are all natural polypeptides inhibitors derived from phages, except one small molecule inhibitor. These natural inhibitors are challenging to obtain and are available in limited quantities, and the small molecule inhibitor is cytotoxic. Herein, we discover aptamers against the SpyCas9 protein, by coupling CE-SELEX within one-round pressure controllable selection strategy. One of the identified aptamers, Apt2, shows high affinity at the nanomolar level and leads for effective SpyCas9 enzymatic inhibition in vitro. It is predicted that Apt2 interacts with the HNH and RuvC domains of SpyCas9, competitively inhibiting the binding of substrate DNA to SpyCas9. The proposed aptamer inhibitor is the oligonucleotide inhibitor of SpyCas9, which has the potential in construction of the universal, simple and precise CRISPR-Cas9 system activity control strategy. Meanwhile, these aptamers could also be valuable tools for study of the functions of CRISPR/Cas9 and the related functional mechanisms.


Assuntos
Aptâmeros de Nucleotídeos , Bacteriófagos , Edição de Genes , DNA/química , Proteínas de Bactérias/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Técnica de Seleção de Aptâmeros
13.
Sci Total Environ ; 926: 172007, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552969

RESUMO

There are complex interactions among urban spatial elements in rainstorm scenarios. Road interruptions may cause isolation between partially submerged buildings and emergency service facilities, thereby affecting the recovery capability of flooded buildings and the accessibility of emergency service facilities. This study constructed a compound spatial network of urban buildings-roads-emergency service facilities, and analyzed the complex dynamic impacts of time-varying dynamic floods on building risk, road risk, and emergency service accessibility. Firstly, a refined flood risk assessment at the building scale was carried out in combination with flood inundation, building vulnerability, population, vulnerable areas, underground buildings, and life facilities. Secondly, betweenness centrality indicator in complex networks was used to calculate road traffic capacity and collapse threshold, and the accessibility of emergency service facilities is calculated based on road traffic capacity. Finally, the interaction and feedback relationships between the compound spatial network were analyzed. The results show that: (1) Flooded building comprehensive risk analysis reveals that floods have a significant impact on residential and commercial land use, and high-risk flood areas are mainly concentrated in the central region of study area. (2) The road network has a collapse threshold, and the fluctuating state of emergency service accessibility is significantly influenced by road traffic capacity. (3) Roads act as "bridges" connecting buildings and emergency service facilities, leading to the redistribution of building flood comprehensive risk and emergency service accessibility, presenting complex dynamic changes over time. Additionally, submerged roads also affect the accessibility of emergency service facilities around flooded buildings, reducing the recovery capacity of flooded buildings, and exhibiting significant heterogeneity characteristics. Future research should consider the complex impacts of floods on urban elements in order to better manage dynamic flood risk.

14.
Dig Dis Sci ; 69(4): 1318-1335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446304

RESUMO

BACKGROUND: Constipation is one of the most common gastrointestinal complaints. Yet, the underlying mechanisms of constipation remain to be explored deeply. Integration of microbiome and metabolome is powerful and promising to demonstrate characteristics of constipation. AIM OF STUDY: This study aimed to characterize intestinal microbiome and metabolome of constipation. In addition, this study revealed the correlations among behaviors, intestinal microbiota, and metabolites interrupted by constipation. METHODS: Firstly, the constipation model was successfully applied. At the macro level, the ability of learning, memory, locomotor activity, and the defecation index of rats with constipation-like phenotype were characterized. At the micro-level, 16S rRNA sequencing was applied to analyze the intestinal microbiota in rats with constipation-like phenotype. 1H nuclear magnetic resonance (NMR)-based metabolomics was employed to investigate the metabolic phenotype of constipation. In addition, we constructed a correlation network, intuitively showing the correlations among behaviors, intestinal microbiota, and metabolites. RESULTS: Constipation significantly attenuated the locomotor activity, memory recognition, and frequency of defecation of rats, while increased the time of defecation. Constipation significantly changed the diversity of intestinal microbial communities, which correspondingly involved in 5 functional pathways. Besides, 28 fecal metabolites were found to be associated with constipation, among which 14 metabolites were further screened that can be used to diagnose constipation. On top of this, associated networks intuitively showed the correlations among behaviors, intestinal microbiota, and metabolites. CONCLUSIONS: The current findings are significant in terms of not only laying a foundation for understanding characteristics of constipation, but also providing accurate diagnosis and treatments of constipation clinically.


Assuntos
Microbiota , Ratos , Animais , RNA Ribossômico 16S/análise , Metaboloma/genética , Trato Gastrointestinal , Constipação Intestinal/metabolismo , Fezes/química
15.
Int J Nanomedicine ; 19: 2395-2407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469059

RESUMO

Background: Recently, the use of the tumor or its secretions as drug carriers has gradually become popular, with the advantages of high biocompatibility and enhanced drug delivery to specific cells. Melanoma is the most malignant tumor of all skin cancers; it is the most metastatic and, therefore, the most difficult to treat. The main purpose of this study is to develop nanovesicles with tumor cell membrane secretion properties to encapsulate target substances to enhance the therapeutic effect of cancer. Methods: Astaxanthin was selected as an anticancer drug due to our previous research finding that astaxanthin has extremely high antioxidant, anti-ultraviolet damage, and anti-tumor properties. The manufacturing method of the astaxanthin nanovesicle carrier is to mix melanoma cells and astaxanthin in an appropriate ratio and then remove the genetic material and inflammatory factors of cancer cells by extrusion. Results: In terms of results, after the co-culture of astaxanthin nanovesicles and melanoma cancer cells, it was confirmed that the ability of astaxanthin nanovesicles to inhibit the growth and metastasis of melanoma cancer cells was significantly better than the same amount of astaxanthin alone, and it had no effect on normal Human cells are also effective. There was no apparent harm on normal cells, indicating the ability of the vesicles to be selectively transported. Conclusion: Our findings illustrated the potential of astaxanthin nanovesicles as an anticancer drug.


Assuntos
Antineoplásicos , Melanoma , Nanopartículas , Humanos , Melanoma/tratamento farmacológico , Antineoplásicos/farmacologia , Membrana Celular , Xantofilas
16.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475587

RESUMO

Nuclear Factor Y (NF-Y) is a class of heterotrimeric transcription factors composed of three subunits: NF-A, NF-YB, and NF-YC. NF-YC family members play crucial roles in various developmental processes, particularly in the regulation of flowering time. However, their functions in petunia remain poorly understood. In this study, we isolated four PhNF-YC genes from petunia and confirmed their subcellular localization in both the nucleus and cytoplasm. We analyzed the transcript abundance of all four PhNF-YC genes and found that PhNF-YC2 and PhNF-YC4 were highly expressed in apical buds and leaves, with their transcript levels decreasing before flower bud differentiation. Silencing PhNF-YC2 using VIGS resulted in a delayed flowering time and reduced chlorophyll content, while PhNF-YC4-silenced plants only exhibited a delayed flowering time. Furthermore, we detected the transcript abundance of flowering-related genes involved in different signaling pathways and found that PhCO, PhGI, PhFBP21, PhGA20ox4, and PhSPL9b were regulated by both PhNF-YC2 and PhNF-YC4. Additionally, the transcript abundance of PhSPL2, PhSPL3, and PhSPL4 increased only in PhNF-YC2-silenced plants. Overall, these results provide evidence that PhNF-YC2 and PhNF-YC4 negatively regulate flowering time in petunia by modulating a series of flowering-related genes.

17.
Biomedicines ; 12(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540273

RESUMO

Esophageal cancer (EC) is one of the most aggressive gastrointestinal cancers. Despite improvements in therapies, the survival rate of patients with EC remains low. Metastasis accounts for up to 90% of cancer-related deaths, and resistance to anti-neoplastic therapeutics is also a main cause of poor survival. Thus, metastasis and drug resistance are undoubtedly the two main challenges in cancer treatment. Among the different categories of noncoding RNAs, lncRNAs have historically drawn less attention. However, lncRNAs have gradually become a research hotspot, and increasing research has demonstrated that lncRNAs participate in the tumorigenesis of multiple types of cancer, including EC. Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides in length that play important roles in epigenetics, transcription regulation, and posttranscriptional processing. In this review, we elucidated the role of lncRNAs in the metastasis and drug resistance of EC and discussed their potential clinical applications and related limitations. With a better understanding of the underlying mechanisms of lncRNAs, we can identify therapeutic targets for EC in the future.

18.
Front Genet ; 15: 1356807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435060

RESUMO

E3 ubiquitin ligases are central modifiers of plant signaling pathways that regulate protein function, localization, degradation, and other biological processes by linking ubiquitin to target proteins. E3 ubiquitin ligases include proteins with the U-box domain. However, there has been no report about the foxtail millet (Setaria italica L. Beauv) U-box gene family (SiPUB) to date. To explore the function of SiPUBs, this study performed genome-wide identification of SiPUBs and expression analysis of them in response to saline-alkali stress. A total of 70 SiPUBs were identified, which were unevenly distributed on eight chromosomes. Phylogenetic and conserved motif analysis demonstrated that SiPUBs could be clustered into six subfamilies (I-VI), and most SiPUBs were closely related to the homologues in rice. Twenty-eight types of cis-acting elements were identified in SiPUBs, most of which contained many light-responsive elements and plant hormone-responsive elements. Foxtail millet had 19, 78, 85, 18, and 89 collinear U-box gene pairs with Arabidopsis, rice, sorghum, tomato, and maize, respectively. Tissue specific expression analysis revealed great variations in SiPUB expression among different tissues, and most SiPUBs were relatively highly expressed in roots, indicating that SiPUBs may play important roles in root development or other growth and development processes of foxtail millet. Furthermore, the responses of 15 SiPUBs to saline-alkali stress were detected by qRT-PCR. The results showed that saline-alkali stress led to significantly differential expression of these 15 SiPUBs, and SiPUB20/48/70 may play important roles in the response mechanism against saline-alkali stress. Overall, this study provides important information for further exploration of the biological function of U-box genes.

19.
Biochem Genet ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429603

RESUMO

Cervical cancer (CC) is considered to be the most prevalent female malignancies across the globe and a prime cause of mortality among women. RNA-binding motif protein 15 (RBM15) has been elucidated to participate in tumorigenesis in various cancers by regulating RNA N6-methyladenosine (m6A) methylation. However, its significance and detailed molecular mechanisms remain uncertain in CC. Using CGA database and qRT-PCR, the RBM15 expression was found to be elevated in CC tissues. After performing EdU, wound healing, Transwell migration, and xenograft tumor assays, RBM15 knockdown inhibited the malignant properties of CC cells along with the tumor development of CC cells in vivo. Moreover, qRT-PCR, MeRIP, and western blotting experiments were also confirmed that decorin (DCN) downregulated in CC was a direct substrate of RBM15 m6A methylation, and RBM15 knockdown could enhance DCN expression in CC cells. The anti-tumor effects of RBM15 knockdown could be abolished by DCN silencing. Overall, RBM15 knockdown lowered the tumorigenesis of CC both in vitro and in vivo, and it does so via mediating m6A modification of DCN mRNA in CC cells.

20.
Natl Sci Rev ; 11(4): nwae056, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444985

RESUMO

The absence of efficient and durable catalysts for oxygen evolution reaction (OER) is the main obstacle to hydrogen production through water splitting in an acidic electrolyte. Here, we report a controllable synthesis method of surface IrOx with changing Au/Ir compositions by constructing a range of sub-10-nm-sized core-shell nanocatalysts composed of an Au core and AuxIr1-x alloy shell. In particular, Au@Au0.43Ir0.57 exhibits 4.5 times higher intrinsic OER activity than that of the commercial Ir/C. Synchrotron X-ray-based spectroscopies, electron microscopy and density functional theory calculations revealed a balanced binding of reaction intermediates with enhanced activity. The water-splitting cell using a load of 0.02 mgIr/cm2 of Au@Au0.43Ir0.57 as both anode and cathode can reach 10 mA/cm2 at 1.52 V and maintain activity for at least 194 h, which is better than the cell using the commercial couple Ir/C‖Pt/C (1.63 V, 0.2 h).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...